La synchronicité et le fonctionnement du cerveau

Et pour finir, l’ordre spatio-temporel, l’ordre non-local, et tous les autres ordres possibles sont-ils entièrement une construction de nos sens et de nos cerveaux, où reflètent-ils une cosmologie universelle à laquelle nos sens et nos cerveaux participent?

Advertisements

Les transformations de Fourier permettent donc d’effectuer dans un premier temps l’analyse en facteurs, et les mêmes transformations permettent de reconstituer l’opération inverse. Dennis Gabor a appliqué cette caractéristique du théorème de Fourier à l’invention de l’hologramme. L’hologramme enrichit les transformations de Fourier d’un modèle, qui peut ensuite être reconstruit par application du processus inverse.

L’hologramme offre une organisation très singulière et très intéressante. David Bohm s’y réfère comme à un «Â ordre impliqué », parce qu’il conçoit que toute forme et tout modèle, y compris l’espace et le temps, sont involués (reployés) en lui. Aussi bien, l’hologramme représente un ordre de distribution. Ses caractéristiques non-locales sont précisément celles que pose le problème de la physique quantique. Nous pourrions dire que l’ordre impliqué de la physique «Â entraîne » un processus de Fourier dans le cerveau du physicien. (Précisons cependant que «Â impose », au lieu de «Â entraîne », serait une meilleure description de la relation qui s‘établit dans ce cas.)
Le parallèle avec l’exemple du coq et du soleil peut ainsi être complété: il existe bien un mécanisme dans le cerveau qui peut être considéré comme un ordre qui se trouverait derrière les corrélations observées de la physique quantique. Cet ordre réside dans les transformations de Fourier appliquées à un modèle spatial. De même qu’une compréhension du processus d’entraînement des rythmes circadiens rend possible la compréhension des liens causals impliqués dans la corrélation entre le coq qui chante et le soleil qui se lève, de même une compréhension du processus de Fourier dans le cerveau rend possible la compréhension des liens causal impliqués dans les corrélations qui s’imposent dans la physique quantique.

Résumons ce que nous avons vu! Le chant du coq précède le lever du soleil. D’ordinaire, on a coutume de considérer que la causalité opère dans le même sens que la flèche du temps. Mais cela est incohérent dans le cas du coq et du soleil; aussi avons-nous recherché une explication et l’avons-nous trouvée dans le déroulement des rythmes circadiens innés du coq. En physique quantique, des problèmes similaires surgissent en ce qui concerne la causalité immédiate: l’effet paraît précéder la cause, ou bien il n’y a absolument aucune base permettant de comprendre la corrélation observée. C’est également incohérent, aussi nous a-t-il fallu chercher une explication. Suivant la démarche selon laquelle c’est l’intrusion de l’observateur dans le phénomène d’observation qui peut expliquer le problème, nous avons étudié le cerveau de l’observateur et découvert le processus de fourier; processus par lequel des modèles sont transformés en un ordre assimilable à celui de l’holographie et à partir duquel ils peuvent être reconstitués.

Il faut donc maintenant se demander si le fait que le processus de Fourier de déroulerait réellement dans le cerveau a un pouvoir explicatif en physique.

La réponse à cette question dépend du pouvoir qu’ont le théorème de Fourier et toutes les procédures mathématiques qui en découlent, de transformer les choses, en partant du monde de l’espace/temps ordianaire où règne la causalité immédiate, en un ordre involué, distribué et non-local, dans lequel des corrélations, et seulement elles, existent. Ce pouvoir de transformation est utilisé en traitement informatique et en sciences statistiques sous la formes des «Â transformations rapides de fourier », chaque fois – et à quelque niveau que ce soit – que des corrélations doivent être calculées. Il est aussi à la base des procédures CAT et PET qui forment des images en corrélant, dans ce domaine de transformation, les résultats d’enregistrements individuels restreints.

Une fois que la nature non-locale du domaine de transformation est clairement reconnue, sa présence peut aider la compréhension à de nombreux niveaux. Là où cette ubiquité est peut-être la mieux mise en valeur, c’est dans la formule de base d’Einstein, concernant la relation entre énergie et masse: E=m.c 2. En physique quantique, E, l‘énergie, est mesurée en termes de moment; m, est la masse des gravitons apparaissant en certains endroits; c, est la vitesse de la lumière déterminant la flèche du temps. (A la vitesse de la lumière, le temps reste immobile.) Ainsi, le côté droit de l‘équation d’Einstein représente l’espace/temps tel que nous avons coutume de le percevoir. Quant au côté gauche, il représente le moment, c’est-à-dire le potentiel d‘énergie disponible à tout instant. E est par conséquent un terme non localisé qui, en fait, est relié à l’espace/temps à travers un transformation de Fourier!

Le cerveau, comme nous l’avons vu plus haut, a la capacité d’opérer à la fois selon un mode spatio-temporel et un mode non-local. Alors pourquoi, en physique quantique, sommes-nous astreints à ne pouvoir observer que l’un ou l’autre? Pourquoi ne pouvons-nous pas observer simultanément le moment et la localisation? La réponse à cette question tient à la complémentarité, inhérente aux techniques et à l’appareillage utilisés pour faire les observations. Précisons cependant que, en suivant la conception de Bohr, la complémentarité est une propriété fondamentale à la fois de la «Â chose » observée et de l’observateur, et non pas seulement un artefact introduit par la procédure choisise. Le théorème de Fourier exprime cette complémentarité de base.

Reconnaître l’existence d’un domaine non-local de transformation, dans lequel des corrélations et seulement elles peuvent avoir lieu, replace les observations qui sont subsumées sous le concept de synchronicité dans un cadre général où l’on trouve d’autres observations de non-localité. La synchronicité paraît bizarre parce que nos sens et nos cerveaux sont programmés pour rechercher des causalités immédiates, quand bien même seules des corrélations seraient observées. Dans le cas de la synchronicité, comme dans le cas du coq et du soleil et celui de la physique quantique, des relations causales ne pourraient être introduites que par référence à l’observateur qui se tient derrière les observations. Le cerveau de l’observateur est doté des capacités de transformation qui permettent d‘établir un ordre non-local aussi bien qu’un ordre spatio-temporel d‘événements.

Il y a qu’il reste plusieurs problèmes difficiles. Pourquoi l’ordre spatio-temporel est-il beaucoup plus facile à atteindre que l’ordre non-causal? Est-ce que les ordres complémentaires de l’espace/temps et de la non-localité sont exhaustifs, ou bien existe-t-il d’autres ordres qui n’ont pas encore été découverts? (Cette question pose le problème des mondes multiples possibles.) Par quels mécanismes les expériences mystiques, qui manifestent souvent des propriétés de non-localité, se trouvent-elles déclenchées? Et pour finir, l’ordre spatio-temporel, l’ordre non-local, et tous les autres ordres possibles sont-ils entièrement une construction de nos sens et de nos cerveaux, où reflètent-ils une cosmologie universelle à laquelle nos sens et nos cerveaux participent? (Cette question est la même que celle qui demande si les mathématiques sont une invention ou une découverte.)

Il ressort de ce que nous avons vu dans ces quelques pages qu’un aspect important de la recherche, en vue de répondre à ces questions, consiste à en savoir plus sur le cerveau qui pose justement ces questions. De nos jours, une fois encore, il semble essentiel de joindre les efforts réalisés dans les sciences de la vie avec ceux qui sont menés dans le domaine des sciences physiques. Il y a à peine un siècle, une psychophysique sensorielle et quantitative a été élaborée à partir d’une telle convergence. Aujourd’hui, le besoin se fait sentir de développer une science fondée sur l‘étude du cerveau, qui puisse embrasser à la fois la physique moderne et la nature spirituelle de l‘être humain.

Karl Pribram, La synchronicité et le fonctionnement du cerveau, dans La synchronicité, l‘âme et la sciences.

The implicate brain

We can never be completely objective in our knowledge because knowing involves the techniques by which we make our observations. As Wigner, Heisenberg’s pupil, has pointed out, modern physics no longer deals with observables but with observations.


Initiation

At Christmastime 1975 the issues of quantum physics became relevant to my explorations of how the brain works. I had come to an impasse with regard to two aspects of brain function. One impasse was the dilemma of whether to think about the events which occurred at the junction between, and in the fine branches of, nerve cells as wave forms or as statistical aggregates. This dilemma appeared to me to be similar to that faced in quantum physics where electrons and photons – particles – at times displayed the characteristics of waves.
The second impasse had to do with perception. Evidence was accumulating to show that the nerve cells of the part of the cerebral cortex connected to the retina responded to a transform of the retinal image, a transform which yielded what Fergus Campbell and John Robson of Cambridge University(1) called ‘spatial frequency.’ Since the same transformation also occurred in the formation of the retinal image by the pupil and lens of the eye, the question arose as to whether the ‘spatial frequency’ domain also characterized the physics of the visual world which we perceive. I took these issues to my oldest son, a physicist and superb teacher, who gave me an intensive course in quantum physics over the Christmas holidays. Toward the end of his really excellent briefs, and having completed some of the essential readings such as Physics for Poets(2) and the like, I remarked how happy i was to be a neuroscientist and not a physicist; we have our problems but, by comparison to what seems to be the conceptual muddle of quantum physics, we’re doing all right.
My son replied, as have many other physicists (and also Karl Popper the philosopher when I faced him with the same issue) that modern physics is not interested in concepts; the mathematical formulations are so precise and have had so much predictive value that conceptualization is not only not necessary but gets in the way. ‘However,’ he added, ‘there are a few physicists who don’t agree to this. Tley are far out types who would appeal to you.’ And he gave me some names such as Max Jammer and David Bohm, and references to the books they had written.

Synchronicity

Back at Stanford, not a week had elapsed before I was asked whether I had heard of David Bohm. My reply was professional. Had I not just ‘graduated?’. Of course I had heard of David Bohm. Despite my hubris, I was gently advised of two papers which Bohm had written and which had been published in Foundations of Theoretical Physics in 1971 and 1973(3), (4).
This was on Friday afternoon. Saturday morning I awoke early and read the two papers. Bohm, in simple clear language, declared that indeed there were conceptual problems in both macro- and microphysics, and that they were not to be swept under the rug. The problems were exactly those which my son had pointed out to me. And, further, Bohm suggested that the root of those problems was the fact that conceptualizations in physics had for centuries been based on the use of lenses which objectify (indeed the lenses of telescopes and microscopes are called objectives). Lenses make objects, particles.
Should one look through gratings rather than lenses, one might see a holographic-like order which Bohm called implicate, enfolded (implicare, Latin to fold in). He pointed out that in a hologram the whole is enfolded into every portion and therefore the whole can be reconstructed from each and any part.
I was exuberant. Bohm held the answers which I had been seeking. I had for years(5),(6) maintained that part of the puzzle of brain functioning, especially the distributed aspects of memory storage and the transformation into the spatial frequency domain, resembled the process by which holograms are constructed. My hunch that perhaps the physical input to the senses shared this transform domain seemed to be sufficiently realistic to be shared by one of the major contributors to theoretical physics.
That Saturday morning I was performing some surgery and my secretary had asked to be present since she had never seen me perform a brain operation. During the surgery (which went without difficulty) I explained not only what I was doing to the assembled team, but also told them of the good news contained in David Bohm’s two theoretical articles. My secretary asked ‘Is this the same David Bohm who has invited you to a conference at Brockwood Park to meet with Krishnamurti?’
I had not registered that invitation in my memory, but we looked it up later that morning and indeed there was my third encounter with David Bohm that week! Obviously we were meant to meet.
Meet we did and often over the next decade. I went to London even before the Brockwood Park conference and have returned there often to hash out specific problems with David Bohm and his close associate, Basil Hiley. Always, both were gracious and patient in the face of my ignorance, and explained everything to me in great detail.
Only once did Bohm become impatient. I challenged him when he expressed the belief that the universe was all ‘thought’ and reality dsted only in what we thought. I expressed dismay with such nonsense. Why, if that were so, would I need to perform experiments and why would they so often come up with results contrary to what I had been thinking? Bohm answered that that was because my thoughts were probably muddled – to which I unfortunately had to agree. But then I noted that the experimental results were usually very clear and not muddled at all, and therefore reality seemed not to reflect my muddled thoughts.
The argument became somewhat heated and I decided that, since Bohm had not been feeling too well, I had better not push too hard but none the less Bohm had to go to hospital to have heart bypass surgery a few weeks later. Since I did not win the argument, I seem bear responsibility for this turn of events. After all, my thoughts could not have determined David’s difficulties with his heart since I was not aware of them. Bohm has recovered fully, and neither he nor Hiley have blamed me for the episode.

The plenum

Are the events occurring at the junctions between, and in the fine dendritic branches of, nerve cells to be considered as waves or as statistical aggregates? What makes electromagnetic energy manifest as particles under some circumstances and as waves under others? Is Niels Bohr’s complementarity formulation(7) the best we can do?
An answer to these questions took the following form and was reached in several steps. Bohm indicated to me that it was inappropriate to ask these questions in the form that I did. The question could not be framed in terms of either/or; rather, waves and particles (statistical events) mutually imply each other. In this formulation. Bohr’s complementarity was replaced by implication, an entirely different conception. Bohr had invented complementarity to indicate that at any one moment, with any specific technique, only one aspect of a totality could be grasped. Heisenberg(8), addressing the same issue. proposed the uncertainty principle: we can never be completely objective in our knowledge because knowing involves the techniques by which we make our observations. As Wigner, Heisenberg’s pupil, has pointed out(9), modern physics no longer deals with observables but with observations.
Bohm’s alternate conceptualization of the wave/particle implication demonstrated that indeed both aspects of the totality could be grasped in one setting. I noted that physics had made conceptual sense in the days of Clerk Maxwell when the universe was filled with an ether and particular events made waves in that medium. The modern era of conceptual confusion seemed to arise with the abandonment of the ether by Einstein in his special theory of relativity, and by Michelson and Morley(10) on the basis of their failure to demonstrate a distorting drag on the presumed ether produced by the earth’s rotation.

So why not reinvent the ether? Perhaps give it a new name so as not to confuse the concept with the one now discredited. Dirac(11) and others had already made the same proposal. In fact, Bohm had suggested this solution to Einstein in 1953 and Einstein had replied that such a solution was a cheap shot, meaning that it simply replaced one set of problems with another. None the less, Bohm and Hiley pursued the idea and proposed(12) the existence of a medium which they called the ‘quantum potential.’ Events, particles, perturbed the medium in such a way as to account for the wave aspects of quantum mechanics.
Philippidis et al. (13) then demonstrated in a computer simulation how to account simultaneously for both the particule and the wave aspects of the single- and double-slit experiments. These experiments had epitomized the conceptual dilemma of quantum physics as expressed in the infamous Schrödinger’s cat (which seemed to be both alive/dead) and the collapse of the wave function (which indicated that when the cat was actually observed, the observer decided that the cat was indeed dead or alive).
The mutual implication of particle and wave was thus demonstrated. True, the quantum potential as a medium had to have some special properties. It certainly could not produce drag. It had to be a potential which was manifest to observation only when perturbed (by a particular event). But is this any worse than ignoring infinities equations when it is necessary to do so in order to make predictions?
The concept of a quantum potential does indeed rationalize not only quantum physics but also cosmology. When a plenum composed of electromagnetic energy and plasma rather than an empty vacuum characterizes the universe, there is no longer any need for someone with a pea-shooter on Andromeda to shoot particles (photons) toward the earth so that we might see them. Rather, a perturbation of the quantum potential occurs on Andromeda, the perturbation is transmitted as a wave form to us, where it reaches the shores of our visual receptors. Here the wave breaks into particles and the breakers are perceived as light.

Non-local processes in the brain

Non-locality was one of the basic issues which had stimulated my initial foray into physics. When patients suffer damage to their forebrains they do not lose particular memory traces: they may not be able to speak or to identify objects visually or tactilely; they may even lose the ability to recall a whole mnemonic category(14); but individual specific memories seem to be sufficiently distributed so that they may be recalled despite extensive damage. The memory traces may, of course, be located elsewhere in the brain than in the damaged part, but then the mechanism by which the traces are recalled must to some extent be distributed or else there would be at least an occasional instance where some single isolated memory loss would be produced.
The invention of holography seemed to hold the key to understanding this distributed non-local aspect of memory storage and retrieval. as well as the constructive aspects of perception. If indeed the input to the pupil of the eye came in the form of wavefronts of electromagnetic potentials, such potential orders had the distributed non-local enfolded characteristics which were also captured in the proccss of holography. As well, certain aspects of brain physiology, such as the fact that single cells in auditory somatosensory and visual cortices resonate to limited bandwidths of the energy spectrum, appeared to share the attributes of the holographic process(15). These tuning curves reflect the dendritic non-propagated slow potentials – the hyper- and depolarizations – which characterize the dendritic patterns in receptor surrface and cortex which are constituted in response to the sensory input.
On the basis of Bohm’s conception, it is the wrong question to ask whether these slow potentials (hyperpolarizations and depolarizations) occurring in the receptors and in the nerve cell structures of the brain are to be conceived as statistical events or as waves. Polarizations occur in a medium provided by such cells as the Mueller fibres in the retina and the oligodendroglia cells in the brain (cells which envelope the fine branches of neurons). This medium can be conceived as a manifold within which the polarizing events are produced.
Mutual implication, rather than either/or, best describes the microneural relationship. Thus the mathematical formulations which have been developed for quantum field theory should go a long way toward explaining such phenomena as the saltitory effects which occur in dendritic networks and are responsible for influencing nerve cell output in an apparently non-local fashion.

Space-time and the implicate order

An equally important step in understanding came at a meeting at the University of California in Berkeley in which Henry Stapp and Geoffrey Chew of the Department of Physics pointed out that most of quantum physics, including their bootstrap formulations based on Heisenberg’s scattermatrices(16),(17), were described in a domain which is the Fourier transform of the space-time domain.
This was of great interest to me because Russel and Karen DeValois of the same university had shown that the spatial frequency encoding displayed by cells of the visual cortex was best described as a Fourier transform of the input pattern(18). The Fourier theorem states that any pattern, no matter how complex, can be analyzed into regular waveform components of different frequencies, amplitudes and (phase) relations among frequencies. Further given such components, the original pattern can be reconstructed. This theorem was the basis for Gabor’s invention of holgoraphy(19).
At a subsequent meeting Bohm agreed that in his concept of an implicate order (at least at a first level) the enfolding was of space and time, and that at this level the implicate and the explicate (space-time) domains were related by a Fourier transform.
Sensory experience is in space-time. When we say that we wish to make sense of something we mean to put it into space-time terms – the terms of Euclidean geometry, clock time, etc. The Fourier transform domain is potential to this sensory domain. The waveforms which compose the order present in the electromagnetic sea which fills the universe make up an interpenetrating organization similar to that which characterizes the waveforms broadly cast by our radio and television stations. Capturing a momentary cut across these airwaves would constitute their hologram. The broadcasts are distributed and at any location they are enfolded among one another.
In order to make sense of this cacophony of sights and sounds, one must tune in on one and tune out the others. Radios and television sets provide such tuners. Sense organs provide the mechanisms by which organisms tune into the cacophony which constitutes the quantum potential organization of the electromagnetic energy which fills the universe.

Coda

This is my understanding, thanks to my son John; to Henry Stapp and Geoffrey Chew; and to Basil Hiley and to Eloise Carlton, who often served as creative interpreter for our deliberations. But above all, I am indebted to you, David Bohm, for providing the inspiration to pursue these ruminations and to give substance to them.

K. H. Pribram, The implicate brain, Quantum implications, Essays in Honour of David Bohm, Edited by B.J. Hiley and F. David Peat, Routledge.

References

  • (1) F. W. Campbell and J. G. Robson, ‘Application of Fourier analysis to the visibtlity of gratings’,_ J. Physiol._, 197, 551-6 (1968).
  • (2) R. B. March, Physics for Poets. McGraw Hill, New York. 1978.
  • (3) D. Bohm, ‘Quantum theory as an indication of a new order in physics. Part A. The development of new orders as shown through the history of physics’, Foundations of Physics, 1, 359-81 (1971).
  • (4) D. Bohm, ‘Quantum theory as an indication of a new order in physics. Part B. Implicate and explicate order in physical law’, ‘ Foundations of Physics, 3, 139-68 (1973).
  • (5) K. H. Pribram. ‘Some dimensions of remembering: Steps toward a neuropsychological model of memory’. in J. Gaito (ed.), Macromolecules and Behavior, Academic Press, New York, 1966, pp. 165-87.
  • (6) K. H. Pribram, Languages of the brain: Experimental Paradoxes and principles in Neuropsychology, Prentice-Hall, Englewood Cliffs, NJ, 1971: 2nd ed., Brooks/Cole, Monterey. Ca., 1977: 3rd ed., Brandon House. New York. 1982.
  • (7) N. Bohr, Atomic Theory and the Description of the Universe‘, Cambridge University Press, 1934.
  • (8) W. Heisenberg, _Niels Bohr and the Development of Physics, McGraw Hill, New York, 1955.
  • (9) E. P. Wigner, ‘Epistemology of quantum mechanics: Its appraisals and demands’, in M. Grene (ed.), The Anatomy of Knowledge, Routledge & Kegan Paul, London, 1969.
  • (10) G. Holton, Thematic Origins of Scientific Thought, Harvard University Press, Cambridge, Mass., 1973, Chap. 9, pp. 261-352.
  • (11) P. A. M. Dirac.‘Is there an aether?’, Nature, 168, 906, (1951).
  • (12) D. J. Bohm and B. J. Hiley, ‘0n the intuitive understanding of nonlocality as implied by quantum theory’, Foundations of Physics, 5, 93-109 (1975).
  • (13) C. Philippidis, C. Dewdney and B. J. Hitey, ‘Quantum interference and the quantum potential’, Nuovo Cim., 52B, 15 (1979).
  • (14) E. Warrrington and R. McCarthy, ‘Category specific access dysphasia, Brain, 106, 859-78 (1983).
  • (15) K. H. Pribram. M. Nuwer and R. Baron, ‘The holographic hypothesis of memory structure in brain function and perception’, in R. C. Atkinson. D. H. Krantz, R. C. Luce and P. Suppes (eds), Contemporary Developments in Mathematical Psychology, W. H. Freeman. San Francisco. 1974.
  • (16) H. P. Stapp, ‘S-matrix interpretation of quantum theory’, Physics Review, D3, 1303 (1971).
  • (17) G. F. Chew, ‘The bootstrap idea and the foundations of quantum theory’. in T. Bastin (ed.), Quantum Theory and Beyond, Cambridge University Press, 1971.
  • (18) R. L. DeValois and K. K. DeValois. ‘Spatial vision’, _Ann. Rev. Psychol., 31, 309-41 (1980).
  • (19) D. Gabor, ‘Theory of communication’, _J. Inst. Elec. Engrs., 93, 429 (1946).